DOI: 10.1039/b314118q

C₁ Coupling *via* bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites[†]

Ivan Lorkovic,*a Maria Noy,a Mike Weiss,b Jeff Sherman,b Eric McFarland,bc Galen D. Stuckya and Peter C. Forda

- ^a Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106. E-mail: lorkovic@chem.ucsb.edu; Fax: +1 805 893 4120; Tel: +1 805 893 5239
- ^b Gas Reaction Technogies, Inc., 301B S. Wimbrow Dr. Sebastian, FL 32958
- ^c Department of Chemical Engineering, University of California, Santa Barbara, CA 93106

Received (in West Lafayette, IN, USA) 5th November 2003, Accepted 23rd December 2003 First published as an Advance Article on the web 6th February 2004

We demonstrate here an alternative scheme for C_1 coupling by way of methane bromination, followed by concurrent bromomethane condensation *and* quantitative HBr neutralization; regeneration of the metal oxide with O_2 with recovery of Br_2 completes the cycle.

Although much of the world's methane is "stranded," utilization of available methane as a chemical feedstock begins in practice with its conversion to methanol by partial oxidation to syn gas followed by recondensation. Subsequent conversion of CH₃OH to olefins was made possible by discoveries in the early seventies by Mobil scientists, 1-4 and later generalized by other workers to CH₃X (X = halide, SH, NH₂, OCH₃) condensation.⁵⁻¹⁴ The proposed mechanism15,16 is an initial dehydrative coupling to form the actual catalyst, a relatively ill-defined adsorbed cyclic hydrocarbocation (carbon pool). The technology has been widely developed for multiple product outputs, and may be considered an alternative to the reliable but extreme steam cracking method of olefin production from low and middle petroleum distillates. For CH₃Cl, formed from CH₄ oxychlorination, the product in most cases is an aromatic-rich liquid together with HCl and water,6,7 with some variation depending on the promoters used.^{8–14} While this chloromethane chemistry has been well characterized and the kinetics are favorable, the process has not been commercialized.

We previously reported a two step technique for partial oxidation of alkanes by oxygen in which a two electron oxidation of a C–H bond is effected by bromine, giving HBr and bromoalkane [eqn. (1)]. ^{17–20}

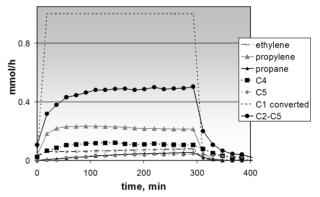
$$RH + Br_2 \rightarrow RBr + HBr$$
 (1)

These intermediates were further converted either to unsaturated hydrocarbons (for C_2 +) or to oxygenates by reaction with a metal oxide solid reactant. The metal oxide served to remove HBr actively, and to direct the output to specific partial oxidation products dependent upon the metal oxide composition and reaction conditions. Complete recovery of bromine and regeneration of the metal oxide was accomplished by reaction of the spent solid with O_2 .

During the course of development of active and regenerable metathesis materials, oxides of calcium were investigated because of their lack of facile redox activity (leading to deep oxidation), stoichiometric HBr neutralization capacity, and the nearly thermoneutral regeneration of CaBr₂ with O₂ to give CaO and Br₂ ($\Delta G^{\circ} = 14.9~\text{kcal mol}^{-1}$). We observed that while activated HZSM-5 (Si : Al = 80) rapidly lost catalytic CH₃Br coupling activity over the course of 10 minutes, calcium oxide zeolite composites‡ quantitatively neutralized HBr and effected the presumably superacidic condensation of methyl bromide to higher olefins [eqn. (2)].

$$HBr + CH_3Br + CaO/ZSM-5 \rightarrow 1/n (C_nH_{2n}) + H_2O + CaBr_2/ZSM-5$$
 (2)

† Electronic supplementary information (ESI) available: additional figures. See http://www.rsc.org/suppdata/cc/b3/b314118g/


Fig. 1 shows the time dependent product output from two serial continuous flow reactors for methane bromination (1) at 525 °C, followed by reaction over a bed of CaO-ZSM-5 at 400 °C (2). Retention of bromine within the second packed bed under these conditions is better than 99.9%, while the product output is very similar to that observed for MeOH coupling over Ca/ZSM-5.²¹

The reaction in Fig. 1 represents HBr sequestration to 50–75% of neutralization capacity (5 hours, 5 cm³ min CH₄, 0.5 cm³ min Br₂(g)) of the solid. After more than 10 runs and regenerations (525 C, 5 hours, 5 cm³ min O₂, quantitative Br₂ recovery), the coupling/neutralization reactivity and product distribution of the regenerated solid (50% selectivity to C₂–C₅) remained unchanged within experimental error. Furthermore, these materials are also catalytic [eqn. (3)] in that even after HBr breakthrough due to metal oxide depletion, the conversion of bromomethanes under the conditions shown in Fig. 1 continues (Figure S1†). This catalytic reactivity allows use of more specialized auxiliary metal oxides for HBr sequestration and Br₂ recovery.

$$CH_3Br \xrightarrow{CaBr_2/ZSM-5} HBr + 1/n (C_nH_{2n})$$
 (3)

Methane partial oxidation by free radical bromination leads to significant buildup of CH_2Br_2 as well as some $CHBr_3$ at appreciable methane conversion. Over CaO/ZSM-5, CH_2Br_2 condenses predominantly to adsorbed carbon in the absence of CH_3Br while cross coupling between CH_2Br_2 and CH_3Br is manifest in the higher output of aromatics (best represented as mesitylene C_9H_{12}), when both species are present (Fig. 2). Notably, with pure CH_3Br feed, the yield of C_2 – C_5 is significantly higher, and that of adsorbed carbon and aromatics significantly lower than observed for a mixed bromomethane feed, Figure S2,† Fig. 2.

The advantage of Br₂ over other halogens in this partial oxidation scheme may be understood in terms of the reduction potential of

Fig. 1 Output of dual stage reactor with a feed of CH₄: Br₂ (5: 0.5 cm³ min⁻¹). First stage: plug flow reactor (1 \times 100 mm glass tube, 500 °C, space time = 0.3 s. Br₂ conversion = 100%, CH₄ conversion = 8.2%). Second stage: fixed bed: (10 \times 100 mm plug of 5 g Ca-ZSM-5, 400 C, space time = 20 s, WHSV = 0.04 h⁻¹).

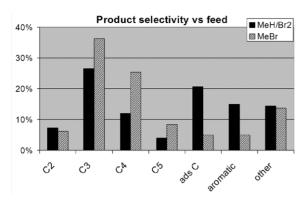


Fig. 2 Comparison of product selectivity for methane/bromine reaction product feed vs. pure CH₃Br feed (conditions as in Fig. 1).

Br₂ to Br⁻ (1.07 V vs. NHE), which in comparison with Cl₂ (1.36 V) and I₂ (0.54 V), makes alkane bromination significantly less exothermic, yet spontaneous enough to go to completion. Bromine also allows for utilization of a wider range of metal oxides as bromide metathesis reagents because the reoxidation of metal bromides by O₂ (1.23 V) can be accomplished under relatively mild conditions. Despite the slightly lower selectivity for monobromination versus monochlorination for comparable methane conversion, a higher degree of reversibility is expected for the weaker C–Br bonds²² than exists for C–Cl bonds for corresponding C₁ species. In addition, CH₃Br and CH₂Br₂ are expected to be significantly easier to separate from each other than are CH₃Cl and CH₂Cl₂. Hence polybrominated methanes are not necessarily lost from a methane conversion process and may be induced to comproportionate with CH₄ feed, raising overall CH₃Br, and ultimately olefin, yield.²³

We direct further work towards establishing the generality of the condensation reactivity of CH_3Br over microporous solids to give olefins or other products and draw on analogies to CH_3OH coupling. Ultimately our goal is to utilize the three step low temperature route—bromination, coupling, regeneration—to streamline the production of higher hydrocarbons from methane, technology which is presently dominated by processes involving MeOH or synthesis gas as intermediates. Selective bromination and reactor configurations favoring comproportionation of methane and CH_2Br_2 or $CHBr_3$ to CH_3Br are potential routes to improved carbon utilization.

This research was funded by Gas Reaction Technologies, Inc., through a sponsored research agreement with the University of California.

Notes and references

‡ CaO/ZSM-5 composites were prepared by wet impregnation of 1 part Ca(NO₃)₂ to 4 parts H-ZSM-5, (Si : Al = 80:1, obtained from Zeolyst Corp.), drying at 125 °C. overnight, followed by calcination at 500 °C. overnight. Catalytic coupling reactivity was not evident until after the first CH₃Br/HBr metathesis/regeneration cycle.

- 1 C. D. Chang and A. J. Silvestri, J. Catal., 1977, 47, 249.
- 2 C. D. Chang, W. H. Lang and A. J. Silvestri, US Pat., 3 998 898, 1976.
- 3 C. D. Chang and W. H. Lang, US Pat., 3 899 544, 1975.
- 4 S. A. Butter, A. T. Jurewicz and W. W. Kaeding, *US Pat.*, 3 894 107, 1975.
- 5 (a) M. H. Gorin and E. Gorin, US Pat. 2, 488, 083, 1949; (b) V. N. Romannikov and K. G. Ione, Kinet. Katal., 1984, 25, 75.
- 6 R. P. Noceti and C. E. Taylor, US Pat., 4 769 504, 1988.
- 7 C. E. Taylor, R. P. Noceti and R. R. Schehl, in *Methane Conversion*, ed. D. M. Bibby, C. D. Chang, R. F. Howe and S. Yurchak, Elsevier, Amsterdam, 1988, p. 483.
- 8 G. A. Olah, H. Doggweiler, J. D. Felberg, S. Frohlich, M. J. Grdina, R. Karpeles, T. Keumi, S.-I. Inaba, W. M. Ip, K. Lammertsma, G. Salem and D. C. Tabor, *J. Am. Chem. Soc.*, 1984, **106**, 2143.
- C. M. White, L. J. Douglas, J. P. Hackett and R. R. Anderson, *Energy Fuels*, 1992, 6, 76.
- 10 Y. Sun, S. M. Campbell, J. H. Lunsford, G. E. Lewis, D. Palke and L.-M. Tau, J. Catal., 1993, 143, 32.
- 11 D. K. Murray, T. Howard, P. W. Goguen, T. R. Krawietz and J. F. Haw, J. Am. Chem. Soc., 1994, 116, 6354.
- 12 K.-J. Jens, in *Methane Conversion*, ed. D. M. Bibby, C. D. Chang, R. F. Howe, and S. Yurchak, Elsevier, Amsterdam, 1988, p. 491.
- 13 J. R. Anderson, Appl. Catal., 1989, 47, 177.
- 14 P. Lersch and F. Bandermann, Appl. Catal., 1991, 75, 133.
- 15 J. F. Haw, W. Song, D. M. Marcus and J. B. Nicholas, Acc. Chem. Res., 2003, 36, 317.
- 16 S. Svelle, S. Kolboe, U. Olsbye and O. Swang, J. Phys. Chem. B, 2003, 107, 5251.
- 17 X.-P. Zhou, A. Yilmaz, G. A. Yilmaz, I. M. Lorkovic, L. E. Laverman, M. J. Weiss, J. H. Sherman, E. W. Mcfarland, G. D. Stucky and P. C. Ford, *Chem. Commun.*, 2003, 2294.
- 18 X.-P. Zhou, I. M. Lorkovic, G. D. Stucky, P. C. Ford, J. H. Sherman and P. Grosso, *US Pat.*, 6 462 243, 2002.
- 19 X.-P. Zhou, I. M. Lorkovic, G. D. Stucky, P. C. Ford, J. H. Sherman and P. Grosso, *US Pat.*, 6 472 572, 2002.
- X.-P. Zhou, I. M. Lorkovic and J. H. Sherman, US Pat., 6 486 368, 2002
- 21 M. Stoecker, Microporous Mesoporous Mater., 1999, 29, 3,
- 22 D. R. Lide, CRC Handbook of Chemistry and Physics 1999–2000: A Ready-Reference Book of Chemical and Physical Data, CRC Press, 2000
- 23 I. M. Lorkovic, P. Grosso, J. H. Sherman, E. M. Mcfarland, P. C. Ford and G. D. Stucky, manuscript in preparation.